Effects of betaine supplementation on hepatic metabolism of sulfur-containing amino acids in mice.

نویسندگان

  • Sang K Kim
  • Young C Kim
چکیده

BACKGROUND/AIMS We previously reported that acute betaine treatment induced significant changes in the hepatic glutathione and cysteine levels in mice and rats. The present study was aimed to determine the effects of dietary betaine on the metabolism of sulfur-containing amino acids. METHODS/RESULTS Male mice were supplemented with betaine (1%) in drinking water for up to 3 weeks. Changes in hepatic levels of major sulfur amino acid metabolites and products were stabilized after 2 weeks of betaine supplementation. Betaine intake increased methionine, S-adenosylmethionine, and S-adenosylhomocysteine levels significantly, but homocysteine and cystathionine were reduced. Methionine adenosyltransferase activity was elevated to three-fold of control. Cysteine catabolism to taurine was inhibited as evidenced by a decrease in cysteine dioxygenase activity and taurine levels in liver and plasma. Despite the significant changes in the transsulfuration reactions, neither hepatic cysteine nor glutathione was altered. Betaine supplementation decreased the hepatotoxicity induced by chloroform (0.5 ml/kg, ip) significantly. CONCLUSIONS Betaine supplementation enhances recycling of homocysteine for the generation of methionine and S-adenosylmethionine while reducing its utilization for the synthesis of cystathionine and cysteine. However, the hepatic levels of cysteine or glutathione are not affected, most probably due to the depression of taurine generation from cysteine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impaired sulfur-amino acid metabolism and oxidative stress in nonalcoholic fatty liver are alleviated by betaine supplementation in rats.

Nonalcoholic fatty liver is involved in the development of nonalcoholic steatohepatitis and chronic liver injury. Impairment of hepatic transsulfuration reactions is suggested to be critically linked with alcoholic liver injury, but its role in nonalcoholic fatty liver remains unknown. We examined the early changes in sulfur-amino acid metabolism and their implication in nonalcoholic fatty live...

متن کامل

Age-Related Changes in Sulfur Amino Acid Metabolism in Male C57BL/6 Mice

Alterations in sulfur amino acid metabolism are associated with an increased risk of a number of common late-life diseases, which raises the possibility that metabolism of sulfur amino acids may change with age. The present study was conducted to understand the age-related changes in hepatic metabolism of sulfur amino acids in 2-, 6-, 18- and 30-month-old male C57BL/6 mice. For this purpose, me...

متن کامل

Alleviation of dimethylnitrosamine-induced liver injury and fibrosis by betaine supplementation in rats.

Previous studies suggested that betaine intake might antagonize the induction of oxidative stress-mediated acute liver injury through regulation of the sulfur-amino acid metabolism. In this study we examined the protective effects of betaine on chronic liver injury and fibrosis induced by dimethylnitrosamine (DMN). Male rats were supplemented with betaine (1%, w/v) in drinking water from 2 week...

متن کامل

Hepatic and renal betaine-homocysteine methyltransferase activity in pigs as affected by dietary intakes of sulfur amino acids, choline, and betaine.

In Exp. 1, young pigs were fed a basal diet containing .17% methionine (Met) (.14% digestible Met), and .48% cystine (.38% digestible cystine) for 14 d (34 to 48 d of age). Treatment additions were .25% DL-Met, .34% betaine, .30% choline, or .25% DL-Met and .34% betaine. Methionine, but not betaine or choline supplementation, increased (P < .05) weight gain and feed efficiency. Hepatic betaine-...

متن کامل

Effects of nonsulfur and sulfur amino acids on the regulation of hepatic enzymes of cysteine metabolism.

To determine the role of nonsulfur vs. sulfur amino acids in regulation of cysteine metabolism, rats were fed a basal diet or diets supplemented with a mixture of nonsulfur amino acids (AA), sulfur amino acids (SAA), or both for 3 wk. Hepatic cysteine-sulfinate decarboxylase (CSDC), cysteine dioxygenase (CDO), and γ-glutamylcysteine synthetase (GCS) activity, concentration, and mRNA abundance w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of hepatology

دوره 42 6  شماره 

صفحات  -

تاریخ انتشار 2005